厦门电池储能

时间:2022年09月17日 来源:

保证进入封闭腔内的气流能够经过各次级散热通道,从而带走电池储能箱内的热量。第四实施例:所述侧封板5为矩形板体结构,且所述侧封板5的顶端通过铰接件12铰接设置在封盖3上,且所述侧封板5的底端通过锁紧件11锁附在基座1上,所述锁紧件11为螺栓,通过侧封板的铰接设置,方便侧封板5安装,且通过锁紧件11和侧封板5将封盖、电池储能箱和基座连接固定。第五实施例:所述基座1、封板3对应于散热通道6的壁体均向散热通道6内凹设,经凹设后进入所述散热通道6内的壁体形成限位凸起13,两个所述电池储能箱2分别抵接在限位凸起13的两侧,且两个所述电池储能箱2通过限位凸起13保持间距,从而避免两电池储能箱2贴合,同时也方便安装,所述封盖3的外轮廓向下延伸形成凸缘14,所述基座1的外轮廓向上延伸形成凸缘14,两所述凸缘14均位于两电池储能箱的外侧,通过两凸缘14对两电池储能箱2进行周向限位。以上所述*是本实用新型的推荐实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本实用新型原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本实用新型的保护范围。控制器把蓄电池的电能送往负载。厦门电池储能

参照图4所示,将储能变流器每一相交流滤波器的一端通过并网/离网控制柜连接到n,每一相交流滤波器的另一端通过并网/离网控制柜分别连接到电网a、b、c,即可实现无变压器隔离的储能变流器,其它电路连接关系和实施例一中所述的连接关系相同,这里不再重复叙述。将图4所示的储能变流器交流滤波器首尾依次连接,即将滤波器连接成三角形连接关系,即可实现三相三线式供电。需要说明的是,并联的变流器应该采用相同的接线方式,变流器交流侧和电网间接入并网/并联控制柜,并网控制柜采用相同的接线方式。本实施例变流器结构通过简单的改变单级式储能变流器的接线方式,即可实现三相四线制到三相三线制供电方式的转变,同一台机器可以适用不同的电网供电方式。同时,本实施例变流器结构解决了同一台储能变流器对不同电压等级电池的充放电问题,提高了储能变流器的应用范围;将三相支路直流母线电容输出端的正极和负极分别通过直流接触器进行连接,通过控制直流接触器的通断,实现单级式储能变流器连接不同电压等级的电池能够正常工作,减小为适用不同电池对储能变流器的投入成本。在另一些实施方式中,电池管理系统(bms)的结构如图5所示。福州磷酸铁锂储能并对单个储能电池侧向进行抽风散热。

所述电池储能箱朝向散热通道一侧的壁体和所述电池储能箱远离于散热通道一侧的壁体上均贯通开设有若干散热孔。进一步的,所述电池储能箱内腔中沿散热通道的长度方向间距设置有若干隔离条,且各个所述隔离条的长度方向沿垂直于散热通道的方向设置,两相邻所述隔离条之间的区域形成电池腔,所述电池腔内容纳电池组。进一步的,两相邻所述电池腔之间形成次级散热通道,所述电池储能箱两侧壁上的散热孔均对应于次级散热通道设置,所述次级散热通道通过散热孔与散热通道连通设置。进一步的,还包括侧封板,两个所述侧封板分别对应封闭设置在散热通道的两端,且所述散热通道通过侧封板形成封闭腔。进一步的,所述侧封板为矩形板体结构,且所述侧封板的顶端铰接设置在封盖上,且所述侧封板的底端通过锁紧件锁附在基座上。进一步的,所述基座、封板对应于散热通道的壁体均向散热通道内凹设,经凹设后进入所述散热通道内的壁体形成限位凸起,两个所述电池储能箱分别抵接在限位凸起的两侧,且两个所述电池储能箱通过限位凸起保持间距。有益效果:本实用新型的两电池储能箱通过基座和封盖进行固定和隔离,形成散热通道。

每个单元外壳的位于两侧**外侧的侧面上分别固定有提手。本实用新型的有益效果是,本实用新型提供的具有阶梯式储能电池的变电站储能设备,合理设计了储能设备中各个的储能电池的结构,并对单个储能电池侧向进行抽风散热,同时当需要组合堆叠时,两个储能电池可配队组合,内部风道也相应配对连通,形成整体的侧向抽风散热,提高散热,减少热量在底部和顶部的堆积。附图说明下面结合附图和实施例对本实用新型进一步说明。图1是本实用新型**优实施例的结构示意图。图2是本实用新型**优实施例的剖视图。图中1、左侧面2、右侧面3、提手4、隔板5、前侧面6、u型槽7、风扇8、通风口。具体实施方式现在结合附图对本实用新型作进一步详细的说明。这些附图均为简化的示意图,*以示意方式说明本实用新型的基本结构,因此其*显示与本实用新型有关的构成。如图1和图2所示的一种具有阶梯式储能电池的变电站储能设备,是本实用新型**优实施例,包括储能箱体。所述储能箱体内分布有若干个储能电池,所述的储能电池包括单元外壳,所述的单元外壳呈阶梯状结构,所述阶梯状结构从下至上具有3层,位于底层的单元外壳内则对应推入固定有3个电池组。整个系统是包括光伏组件阵列、光伏控制器、电池组、电池管理系统(BMS)。

有效解决了传统的阈值法监测方式的漏报、误报、预警滞后问题,实现早期可靠预警。附图说明图1为本发明实施例中储能系统的结构示意图;图2为本发明实施例中储能变流器并联运行拓扑图;图3为本发明实施例中带隔离变压器储能变流器的电路结构拓扑图;图4为本发明实施例中无隔离变压器储能变流器的电路结构拓扑图;图5为本发明实施例中电池管理系统结构示意图;图6为本发明实施例中储能变流器并网并联运行控制图;图7为本发明实施例中储能变流器离网并联运行控制图;图8为本发明实施例中储能变流器的控制框图;图9为本发明实施例中储能变流器的锁相环框图;图10为本发明实施例中储能变流器的坐标变换框图。具体实施方式应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。需要注意的是,这里所使用的术语*是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时。每个单元外壳的位于两侧**外侧的侧面上分别固定有提手。深圳助力车储能厂家

且所述支撑座的底面至。厦门电池储能

所述连接件3为板体结构,且所述连接件3上开设有线性的调节槽7,所述母线接头5、子线接头6分别各通过紧固件4滑动设置在调节槽7上,且所述母线接头5、子线接头6沿调节槽7的长度方向间距设置,则通过紧固件4相对于母线接头、子线接头的松紧调节两接头的间距;以适用电器元件之间不同的安装间距。所述紧固件4为螺栓,所述紧固件4的杆体穿过调节槽7后锁附在母线接头5或子线接头6上,且所述母线接头5、子线接头6对应紧固件开设有螺纹穿孔8,且所述紧固件依次穿过调节槽7、螺纹穿孔8后压紧在母线1或子线2上。通过螺栓将连接件3、铜排和母线接头/子线接头三者连接。所述母线接头5、子线接头6均为u型块状结构,且所述母线1、子线2分别对应卡设在所述母线接头5、子线接头6的u型槽内。其中母线1与子线2为垂直连接,则母线接头5和子线接头6的u型连接部相对设置,所述子线接头6、母线接头5相对的一侧面为相对面9,且所述相对面9喷覆绝缘漆形成绝缘面,以避免在两接头十分靠近且间隙较小时造成的拉弧现象。如附图5所示,为连接件3的另一种实施例:所述连接件3的板体在垂直于调节槽7的方向上分割,使得所述连接体3包含均呈u型形状的***板体10和第二板体11。厦门电池储能

浙江瑞田能源有限公司是一家有着雄厚实力背景、信誉可靠、励精图治、展望未来、有梦想有目标,有组织有体系的公司,坚持于带领员工在未来的道路上大放光明,携手共画蓝图,在浙江省等地区的能源行业中积累了大批忠诚的客户粉丝源,也收获了良好的用户口碑,为公司的发展奠定的良好的行业基础,也希望未来公司能成为*****,努力为行业领域的发展奉献出自己的一份力量,我们相信精益求精的工作态度和不断的完善创新理念以及自强不息,斗志昂扬的的企业精神将**浙江瑞田能源供应和您一起携手步入辉煌,共创佳绩,一直以来,公司贯彻执行科学管理、创新发展、诚实守信的方针,员工精诚努力,协同奋取,以品质、服务来赢得市场,我们一直在路上!

热门标签
信息来源于互联网 本站不为信息真实性负责